📊 Classification

  • Predicts discrete categories
  • Example: Spam vs Not Spam
  • Algorithms: KNN, Decision Trees, SVM
  • Output: Class label

📈 Regression

  • Predicts continuous values
  • Example: House price prediction
  • Algorithms: Linear, Polynomial
  • Output: Numerical value

The Supervised Learning Process:

  1. Collect labeled data: Gather input-output pairs
  2. Split data: Training set (80%) and test set (20%)
  3. Choose algorithm: Select appropriate model
  4. Train model: Learn patterns from training data
  5. Evaluate: Test on unseen data
  6. Predict: Use model on new inputs
🏥 Medical Diagnosis

Classify diseases from symptoms

📧 Email Filtering

Detect spam messages

💰 Price Prediction

Estimate real estate values